Do you want to remove all your recent searches?

All recent searches will be deleted

The surface of cuboids and Siegel modular threefolds - Damiano Testa (Warwick)

6 years ago710 views

Date: Thursday 2nd February 2012
Speaker: Damiano Testa (Warwick).
Title: The surface of cuboids and Siegel modular threefolds.

Abstract: A perfect cuboid is a parallelepiped with rectangular faces all of whose edges, face diagonals and long diagonal have integer length. A question going back to Euler asks for the existence of a perfect cuboid. No perfect cuboid has been found, nor it is known that they do not exist. In this talk I will first compute the Picard group of the space of cuboids (joint with M. Stoll). Then, I will show that the space of cuboids
is a divisor in a Siegel modular threefold, thus allowing to translate the existence of a perfect cuboid to the existence of special torsion structures in abelian surfaces defined over number fields.

http://www.maths.ed.ac.uk/cheltsov/seminar/

Report this video

Select an issue

Embed video

The surface of cuboids and Siegel modular threefolds - Damiano Testa (Warwick)
Autoplay
<iframe frameborder="0" width="480" height="270" src="//www.dailymotion.com/embed/video/xobg9l" allowfullscreen allow="autoplay"></iframe>
Add this video to your site using the above embed code